Let G be a td group and (π, V) be a smooth G-representation. Fix a (left) Haar measure μ of G and let $C_c^{\infty}(G) \simeq \mathcal{H}(G)$ denote the Hecke algebra of G.

- **1.** Let $K \subset G$ be a compact, open subgroup.
 - (a) Show that $e_K * e_K = e_K$.
 - **(b)** Show that $\pi(e_K)V = V^K$.
 - (c) Show that if $\xi \in \mathcal{D}_c(G)$ satisfies that $\xi * e_K \equiv 0$ for each K, then $\xi \equiv 0$.
- **2.** Show that $\mathcal{H}(G)$ has a multiplicative identity if and only if G is discrete.
- **3.** Suppose that

$$0 \longrightarrow V_1 \longrightarrow V_2 \longrightarrow V_3 \longrightarrow 0$$

is a short exact sequence of smooth G-representations. Show that V_2 is admissible if and only if V_1 and V_3 are admissible.

We now recall the context of Friday's lecture. Let $G = F^{\times}$ for F a non-archimedean local field, and fix a uniformizer $\varpi \in F^{\times}$. For a fixed character $\omega : \mathcal{O}_F^{\times} \to \mathbb{C}^{\times}$, let

$$\Omega(F^{\times}, \omega) = \{ \chi : F^{\times} \to \mathbb{C}^{\times} : \chi|_{\mathcal{O}_F^{\times}} \equiv \omega \}.$$

Recall the map

$$F: \mathcal{D}_c(F^{\times}) \longrightarrow \mathbb{C}[\Omega(F^{\times})],$$

$$\xi \longmapsto (\hat{\xi}_{\omega}(t))_{\omega \in \Omega(\mathcal{O}_F^{\times})},$$

where $\hat{\xi}_{\omega}(t) = \int_{F^{\times}} \omega(\arg(x)) t^{\operatorname{val}(x)} \xi(x)$.

4. Let $e_{\omega} \in \mathcal{H}(F^{\times})$ be the function

$$e_{\omega}(t) = \begin{cases} \omega(t) & : t \in \mathcal{O}_F^{\times}, \\ 0 & : \text{otherwise.} \end{cases}$$

Prove that

$$F(\mathcal{D}_c(F^{\times}) * e_{\omega}) = \mathbb{C}[\Omega(F^{\times}, \omega)].$$

5. We now complete the proof that the map F extends to an isomorphism

$$F_{ec}: \mathcal{D}_{ec}(F^{\times}) \xrightarrow{\sim} \mathbb{C}[\Omega(F^{\times})],$$

where $\mathcal{D}_{ec}(F^{\times}) = \{ \xi \in C_c^{\infty}(F^{\times})^* : \xi * f \text{ has compact support, } f \in \mathcal{H}(F^{\times}) \}$ and

$$F_{ec}(\xi) = (F(\xi * e_{\omega}))_{\omega}.$$

The preceding exercise shows that it suffices to prove that $\xi \mapsto (\xi * e_{\omega})_{\omega}$ induces an isomorphism

$$\mathcal{D}_{ec}(F^{\times}) \xrightarrow{\sim} \prod_{\omega \in \Omega(\mathcal{O}_F^{\times})} \mathcal{D}_c(F^{\times}) * e_{\omega}.$$

(a) Show that for any compact open subgroup $K \subset \mathcal{O}_F^{\times}$, we have

$$e_K = \sum_{\omega \in \Omega(\mathcal{O}_F^{\times}/K)} e_{\omega}.$$

(b) Use this to show that

$$\prod_{\omega \in \Omega(\mathcal{O}_F^{\times})} \mathcal{D}_c(F^{\times}) * e_{\omega} \simeq \varprojlim_K \mathcal{D}_c(F^{\times}) * e_K.$$

(c) Prove that F_{ec} induces an isomorphism by showing that $\mathcal{D}_{ec}(F^{\times}) \simeq \varprojlim_K \mathcal{D}_c(F^{\times}) * e_K$.